Still Thinking Of Assignment Help & Grades ? Book Your Assignment At The Lowest Price Now & Secure Higher Grades! CALL US +91-9872003804
Order Now
Value Assignment Help

Assignment sample solution of MATH101 - Introduction to Calculus

Assessment Task: Calculus and Applications

Evaluate the following definite integral and interpret the result in the context of the area under the curve:

∫04(x2+2x+1) dx\int_{0}^{4} (x^2 + 2x + 1) \, dx∫04​(x2+2x+1)dx

Additionally, find the average value of the function f(x)=x2+2x+1f(x) = x^2 + 2x + 1f(x)=x2+2x+1 over the interval [0,4][0,4][0,4].

  1. 1
  2. 2

Maths Assignment Sample

Q1:

Answer :

Step 1: Solve the definite integral

∫(x2+2x+1) dx=x33+x2+x+C\int (x^2 + 2x + 1) \, dx = \frac{x^3}{3} + x^2 + x + C∫(x2+2x+1)dx=3x3​+x2+x+C

Evaluate the integral from x=0x = 0x=0 to x=4x = 4x=4:

∫04(x2+2x+1) dx=[x33+x2+x]04\int_{0}^{4} (x^2 + 2x + 1) \, dx = \left[\frac{x^3}{3} + x^2 + x\right]_0^4∫04​(x2+2x+1)dx=[3x3​+x2+x]04​

Substitute x=4x = 4x=4:

433+42+4=643+16+4=643+20=1243\frac{4^3}{3} + 4^2 + 4 = \frac{64}{3} + 16 + 4 = \frac{64}{3} + 20 = \frac{124}{3}343​+42+4=364​+16+4=364​+20=3124​

Substitute x=0x = 0x=0:

033+02+0=0\frac{0^3}{3} + 0^2 + 0 = 0303​+02+0=0

Thus, the area under the curve is:

1243 units2\frac{124}{3} \, \text{units}^23124​units2

Step 2: Find the average value
The average value of f(x)f(x)f(x) over [0,4][0,4][0,4] is given by:

Average value=1b−a∫abf(x) dx\text{Average value} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dxAverage value=b−a1​∫ab​f(x)dx

Substitute a=0a = 0a=0, b=4b = 4b=4, and ∫04f(x) dx=1243\int_{0}^{4} f(x) \, dx = \frac{124}{3}∫04​f(x)dx=3124​:

Average value=14−0⋅1243=12412=313\text{Average value} = \frac{1}{4-0} \cdot \frac{124}{3} = \frac{124}{12} = \frac{31}{3}Average value=4−01​⋅3124​=12124​=331​

Thus, the average value is:

313 units\frac{31}{3} \, \text{units}331​units